热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

也就是|小窗_卷积的特征提取与参数计算

篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。Dense和Conv2D根本区别在于,Den

篇首语:本文由编程笔记#小编为大家整理,主要介绍了卷积的特征提取与参数计算相关的知识,希望对你有一定的参考价值。


Dense和Conv2D根本区别在于,Dense层从输入空间中学到的是全局模式,比如对于MNIST数字来说,全局模式就是涉及所有像素的模式。而Conv2D学到的是局部模式(local pattern),同样以MNIST为例,Conv2D学到的是在输入图像的小窗口中发现的模式(pattern)。

这个重要特性使卷积神经网络具有两个有趣的性质:

1. 卷积神经网络学到的模式具有平移不变性。卷积神经网络在图像右下角学到某个模式后,它可以在任何地方识别这个模式,比如左上角。但是对于Dense网络来说,如果模式出现在新的位置那么必须重新学习这个模式。这使得卷积神经网络在处理图像时可以更高效的利用数据。

2. 卷积神经网络可以学到模式的空间层次结构。如下图所示,第一个卷积层将学习较小的局部模式(比如边缘),第二个卷积层将学习由第一个层的特征们组成的更大的模式,以此类推,使得卷积神经网络可以学习越来越复杂,越来越抽象的视觉概念。

对于MINST,第一个卷积层接收一个大小为(28,28,1)的输入特征图。为了通过卷积从该输入特征图中提取不同的局部模式,我们要设计不同的卷积核。每个卷积核的大小宽高多为3*3或者5*5,卷积核的深度与输入特征图的深度一致,卷积核的个数与这一层需要获得的局部模式数量一致。每一个卷积核也成为一个滤波器,通过滤波器的过滤(filter),就学到了一个局部模式(特征)。例如,我设计的第一个卷积层希望从这张图片中获取32种局部模式,那么我就要设计32个(3*3*1)的卷积核,经过第一层过滤后,会形成一个(26*26*32)的输出特征图。每个过滤器与输入特征图进行卷积运算会得到一个(26*26)的响应图(response map),32个过滤器就会得到(26*26*32)这样输出特征图。

所以,特征图深度方向上的每一个维度都是一个特征(过滤器),而每一个维度上的2D张量是该维度过滤器对输入的响应所形成的二维空间图(map)。

 现在,对第一次卷积层得到的(26*26*32)特征图进行一次最大值池化(MaxPooling),经过池化的特征数量变为(13*13*32)。随后设计第二个卷积层,对于第二个卷积层而言输入的特征图就是(13,13,32),那么第二个卷积层的卷积核深度也应该是32,也就是(3,3,32),比如第二个卷积层我想提取64个特征,那么就意味着这一层经过运算后,输出的特征图为(11,11,64),随后是针对第二层卷积输出的最大值池化,经过池化的特征数量变为(5,5,64),然后可以设计第三个卷积层,那么根据输入特征图的深度,第三个卷积层的卷积核深度为64,也就是(3,3,64),比如第三个卷积层我也想提取64个特征,那么就意味着这一层经过运算后,输出的特征图为(3,3,64)。经过第三次卷积后,将输出内容可以与Dense层连接,然后分类输出。当然在于Dense层连接前,需要将3维数据“抻平”,变为一维数据才能输入到Dense层。最终我们以代码的形式来设计一下文中所述的神经网络:

from tensorflow import keras
from tensorflow.keras import models
from tensorflow.keras import layers
from tensorflow.keras import datasets
from tensorflow.keras import utils
mymodel = models.Sequential()
mymodel.add(layers.Conv2D(32,(3,3),activation='relu',input_shape=(28,28,1)))
mymodel.add(layers.MaxPooling2D(2,2))
mymodel.add(layers.Conv2D(64,(3,3),activation='relu'))
mymodel.add(layers.MaxPooling2D(2,2))
mymodel.add(layers.Conv2D(64,(3,3),activation='relu'))
mymodel.add(layers.Flatten())
mymodel.add(layers.Dense(64,activation='relu'))
mymodel.add(layers.Dense(10,activation='softmax'))
mymodel.summary()

 模型的summary函数会返回每个层的参数量:



_________________________________________________________________
 Layer (type)                Output Shape              Param #
=================================================================
 conv2d (Conv2D)             (None, 26, 26, 32)        320


 max_pooling2d (MaxPooling2D  (None, 13, 13, 32)       0
 )


 conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496


 max_pooling2d_1 (MaxPooling  (None, 5, 5, 64)         0
 2D)


 conv2d_2 (Conv2D)           (None, 3, 3, 64)          36928


 flatten (Flatten)           (None, 576)               0


 dense (Dense)               (None, 64)                36928


 dense_1 (Dense)             (None, 10)                650


如果能理解卷积网络层中核的形状和个数,那么每一层的参数就不难理解了。



 conv2d (Conv2D)             (None, 26, 26, 32)        320


第一个卷积层的卷积核大小为(3,3,1),共32个,所以w = 3*3*1*32 = 288,有w就会有偏置b,一维向量共32个元素。所以一共有320个参数。 



 conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496


第二个卷积层的卷积核大小为(3,3,32),共64个,所以w = 3 * 3 *32 * 64 =  18432,还有偏置b中的64个变量,所以一共有18496个参数。



 conv2d_2 (Conv2D)           (None, 3, 3, 64)          36928


第三个卷积层的卷积核大小为(3,3,64),共64个,所以w = 3 * 3 *64 * 64 =  36864,还有偏置b中的64个变量,所以一共有36928个参数。



 dense (Dense)               (None, 64)                36928


输入层维度为576(把(3,3,64)给抻平),输出层维度是64,所以w是 576*64 = 36864,再加上偏置向量中的64个元素,所以一共有36928个参数。



 dense_1 (Dense)             (None, 10)                650


最后一个Dense层,输入为64,输出是10,所以w是64*10 = 640,最后再加上10个偏置,所以一共有650个参数。

整个神经网络的参数总数为93322个。

(train_img,train_labels),(test_img,test_labels) = datasets.mnist.load_data()
train_img = train_img.reshape((60000,28,28,1))
train_img = train_img.astype('float32')/255
test_img = test_img.reshape((10000,28,28,1))
test_img = test_img.astype('float32')/255
train_labels = utils.to_categorical(train_labels)
test_labels = utils.to_categorical(test_labels)
mymodel.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
mymodel.fit(train_img,train_labels,epochs=5,batch_size=64)
myloss,myaccuracy =mymodel.evaluate(test_img,test_labels)
print(f'模型测试准确率:myaccuracy')

最终在测试集上得到的准确率为0.9912999868392944。

相较于单纯使用Dense进行组网准确率还是有明显上升的(纯Dense组网的准确率在97%以上)。


推荐阅读
  • 不同优化算法的比较分析及实验验证
    本文介绍了神经网络优化中常用的优化方法,包括学习率调整和梯度估计修正,并通过实验验证了不同优化算法的效果。实验结果表明,Adam算法在综合考虑学习率调整和梯度估计修正方面表现较好。该研究对于优化神经网络的训练过程具有指导意义。 ... [详细]
  • 浏览器中的异常检测算法及其在深度学习中的应用
    本文介绍了在浏览器中进行异常检测的算法,包括统计学方法和机器学习方法,并探讨了异常检测在深度学习中的应用。异常检测在金融领域的信用卡欺诈、企业安全领域的非法入侵、IT运维中的设备维护时间点预测等方面具有广泛的应用。通过使用TensorFlow.js进行异常检测,可以实现对单变量和多变量异常的检测。统计学方法通过估计数据的分布概率来计算数据点的异常概率,而机器学习方法则通过训练数据来建立异常检测模型。 ... [详细]
  • 阿里Treebased Deep Match(TDM) 学习笔记及技术发展回顾
    本文介绍了阿里Treebased Deep Match(TDM)的学习笔记,同时回顾了工业界技术发展的几代演进。从基于统计的启发式规则方法到基于内积模型的向量检索方法,再到引入复杂深度学习模型的下一代匹配技术。文章详细解释了基于统计的启发式规则方法和基于内积模型的向量检索方法的原理和应用,并介绍了TDM的背景和优势。最后,文章提到了向量距离和基于向量聚类的索引结构对于加速匹配效率的作用。本文对于理解TDM的学习过程和了解匹配技术的发展具有重要意义。 ... [详细]
  • 生成式对抗网络模型综述摘要生成式对抗网络模型(GAN)是基于深度学习的一种强大的生成模型,可以应用于计算机视觉、自然语言处理、半监督学习等重要领域。生成式对抗网络 ... [详细]
  • 本文介绍了Swing组件的用法,重点讲解了图标接口的定义和创建方法。图标接口用来将图标与各种组件相关联,可以是简单的绘画或使用磁盘上的GIF格式图像。文章详细介绍了图标接口的属性和绘制方法,并给出了一个菱形图标的实现示例。该示例可以配置图标的尺寸、颜色和填充状态。 ... [详细]
  • 本文介绍了在Python张量流中使用make_merged_spec()方法合并设备规格对象的方法和语法,以及参数和返回值的说明,并提供了一个示例代码。 ... [详细]
  • Learning to Paint with Model-based Deep Reinforcement Learning
    本文介绍了一种基于模型的深度强化学习方法,通过结合神经渲染器,教机器像人类画家一样进行绘画。该方法能够生成笔画的坐标点、半径、透明度、颜色值等,以生成类似于给定目标图像的绘画。文章还讨论了该方法面临的挑战,包括绘制纹理丰富的图像等。通过对比实验的结果,作者证明了基于模型的深度强化学习方法相对于基于模型的DDPG和模型无关的DDPG方法的优势。该研究对于深度强化学习在绘画领域的应用具有重要意义。 ... [详细]
  • 本文介绍了使用Spark实现低配版高斯朴素贝叶斯模型的原因和原理。随着数据量的增大,单机上运行高斯朴素贝叶斯模型会变得很慢,因此考虑使用Spark来加速运行。然而,Spark的MLlib并没有实现高斯朴素贝叶斯模型,因此需要自己动手实现。文章还介绍了朴素贝叶斯的原理和公式,并对具有多个特征和类别的模型进行了讨论。最后,作者总结了实现低配版高斯朴素贝叶斯模型的步骤。 ... [详细]
  • 开源Keras Faster RCNN模型介绍及代码结构解析
    本文介绍了开源Keras Faster RCNN模型的环境需求和代码结构,包括FasterRCNN源码解析、RPN与classifier定义、data_generators.py文件的功能以及损失计算。同时提供了该模型的开源地址和安装所需的库。 ... [详细]
  • 本博文基于《Amalgamationofproteinsequence,structureandtextualinformationforimprovingprote ... [详细]
  • 【论文】ICLR 2020 九篇满分论文!!!
    点击上方,选择星标或置顶,每天给你送干货!阅读大概需要11分钟跟随小博主,每天进步一丢丢来自:深度学习技术前沿 ... [详细]
  • Opencv提供了几种分类器,例程里通过字符识别来进行说明的1、支持向量机(SVM):给定训练样本,支持向量机建立一个超平面作为决策平面,使得正例和反例之间的隔离边缘被最大化。函数原型:训练原型cv ... [详细]
  • 一、tf.transpose函数的用法tf.transpose(input,[dimension_1,dimenaion_2,..,dimension_n]):这个函数主要适用于交换输入张量的不同 ... [详细]
  • 微软头条实习生分享深度学习自学指南
    本文介绍了一位微软头条实习生自学深度学习的经验分享,包括学习资源推荐、重要基础知识的学习要点等。作者强调了学好Python和数学基础的重要性,并提供了一些建议。 ... [详细]
  • 本文介绍了如何在Jquery中通过元素的样式值获取元素,并将其赋值给一个变量。提供了5种解决方案供参考。 ... [详细]
author-avatar
mobiledu2502856013
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有